CIS 9590 Ad Hoc Networks (Part I)

Jie Wu Department of Computer and

Information Sciences Temple University Philadelphia, PA 19122

Table of Contents

- Introduction
- Infrastructured networks
 - Handoff
 - Iocation management (mobile IP)
 - channel assignment

Table of Contents (cont'd.)

Infrastructureless networks

- Wireless MAC (IEEE 802.11 and Bluetooth)
- Ad hoc routing protocols
- Multicasting and broadcasting
- Power optimization
- Coverage
- Security

Table of Contents (cont'd.)

Infrastructureless networks (cont'd.)

- Localization
- Network coding and capacity
- Applications
 - Sensor networks
 - Cognitive radio networks
 - Pervasive computing
- Delay tolerant and social networks
- Sample on-going projects

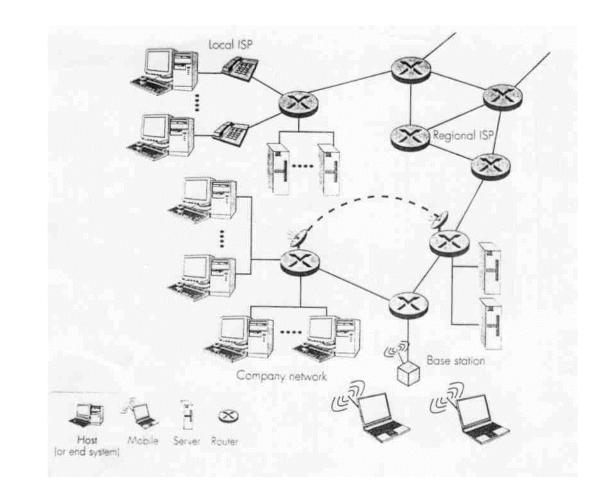
Classification of Communication Networks

Scale

LAN, MAN, WAN, Internet

Transmission technology

- broadcast
- point-to-point


Service

- single service
- integrated service

Transmission medium

- wired networks
- wireless networks

Wired/Wireless Networks

Classification of Wireless Networks

Scale

Wireless PAN, LAN, MAN, WAN

Access technology

- GSM, TDMA, CDMA
- Wi-Fi (802.11), hiperlin2, Bluetooth, infrared, satellite

Network application

- Sensor, wearable, pervasive, home networks
- Network formation and architecture
 - Infrastructure-based networks
 - Infrastructureless (ad hoc) networks

Wireless Networks

- 200 million wireless telephone handsets (purchased annually)
- A billion wireless communication devices in use (in near future)
- 244 billion wireless messages by Dec.
 2004
- "anytime, anywhere"
- "manytime, manywhere" (in many applications)

Wireless Comm. Characteristics

- Higher interference (low reliability)
- Low bandwidth and transmission rates
- High variable conditions (loss rate, disconnection, channel changes)
- Limited computing, transmission, and energy resources
- Limited service coverage
- Weaker security

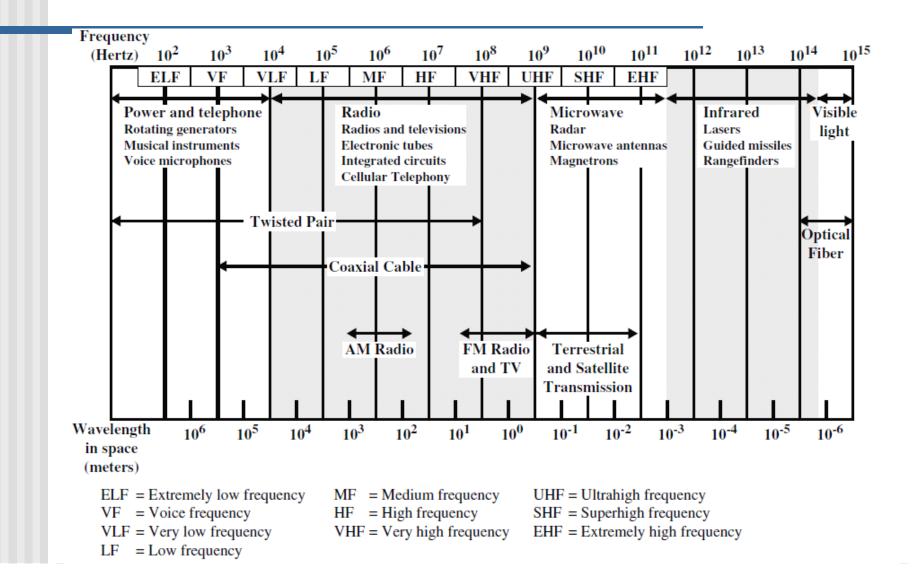
Samples

- Portable phones (home cordless, cellular, PCS)
- Paging (one-way service)
- Personal digital assistants (PDAs)
- Wireless LANS (small service area with high-bit-rate services)

Samples (Cont'd.)

- Satellites (ubiquitous coverage with lowbit-rate services)
 - Two-way comm. between satellites and vehicles (and ships)
 - One-way comm. Global Positioning Systems (GPS)
- Wireless loops (local or metropolitan)
- Wireless ATM
- Mobile IP

Wireless Network Applications


Positioning method using Cell-id

- Local weather forecast
- Nearest vacant parking garage
- Events today in the city
- Personalized service: M-business
 - E-mail
 - Mobile gaming
 - Mobile advertising
- Social networks applications

Wireless Comm. Basics

- Electromagnetic Radio propagation spectrum: $C = \lambda * f$ Line-of-sight (straight) c: speed of light: 3 × 10⁸ Reflection • λ : wavelength in meters Diffraction f: frequency in Hertz Scattering i tanaké mala sitadén a Converte Shore e 30.000 NOR 668620 66 colorrane 3008-003 ×406γ ⇔× 25.2° $2 \leq \frac{2}{3}$ 800+4320 juni :;;; ¹ a poste ⁴
 - 399-00- 66 w ¹³ marine to the interview of the second se rá Viznáropie and and a second the second constants. The second sec Priotect. itmo hermer -– minie Nexisi Stanova (†) 10 ° ŵ× w :::'' :::^{**} Commentaria di age is a water 20. Cables a 24 ξX, 125 . Linin s a agaa s WARD COMP ·2123. -11: K. えとかべい maximum Y

Electromagnetic Spectrum

Wireless Channels

Path Loss

- Ratio of the power of transmitter (t) and receiver (r)
- P_t/P_r ~ d⁴ (free space) or ~ d² (two paths)

Interference

- Cochannel
- Adjacent channel

Fading (fluctuations)

- Fast fading (delay spread)
- Slow fading (shadow fading)
- Doppler shift
 - Frequency change/shift due to mobility of t or r
 - Doppler shift: v/λ
 (v: speed between t and r)

Channel Capacity

Nyquist's Theorem Shannon's Theorem

 $C = 2 \times B \times \log_2 L$

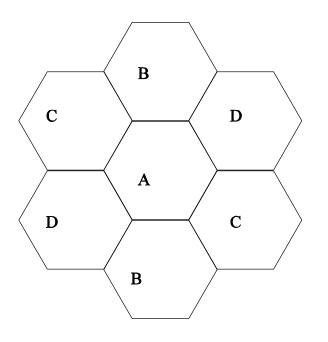
- C: capacity
- B: Bandwidth
- L: number of signal levels
- Binary: L = 2

 $C = B \times \log_2 (1 + S/N)$

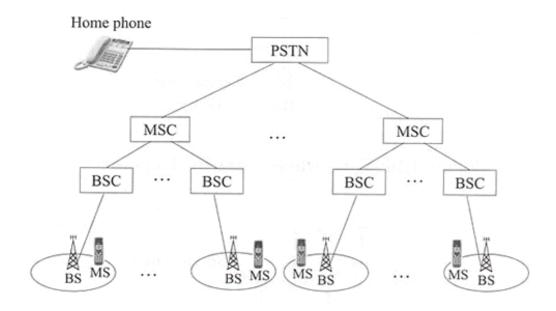
- S: signal power
- N: noise power
- SNR (signal-noiseratio): 10 log₁₀(S/N) (in decibels: db)

Example

3 MHz and 4 MHz with SNR: 24 db


> B = 4-3 = 1 MhzSNR = 2d db = 10 $\log_{10}(S/R)$

- Using Shannon's formula,
- $C = 10^6 \times \log_2(1+251)$
 - $= 10^{6} \times 8 = 8$ Mbps


 Suppose spectrum is
 No. of levels needed to achieve the capacity based on Nyquist's formula

C = 2B
$$\log_2 L$$

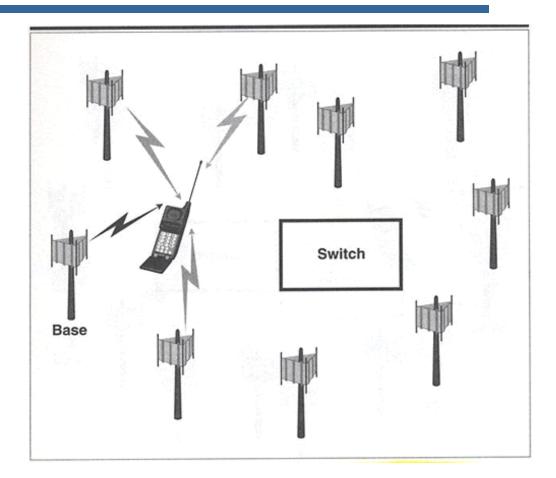
8 x 10⁶ = 2 x 10⁶ x $\log_2 L$
4 = $\log_2 L$
L = 16

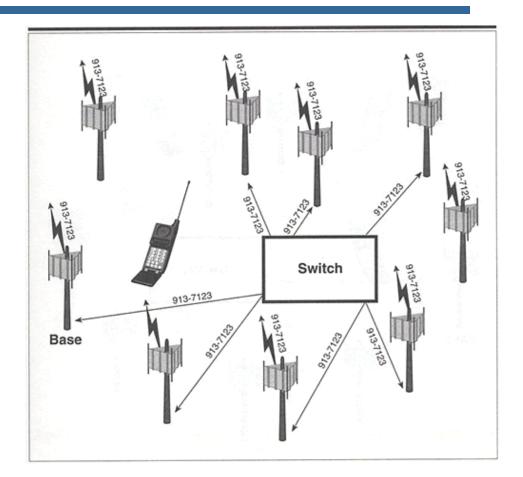
Cellular architectureBase station

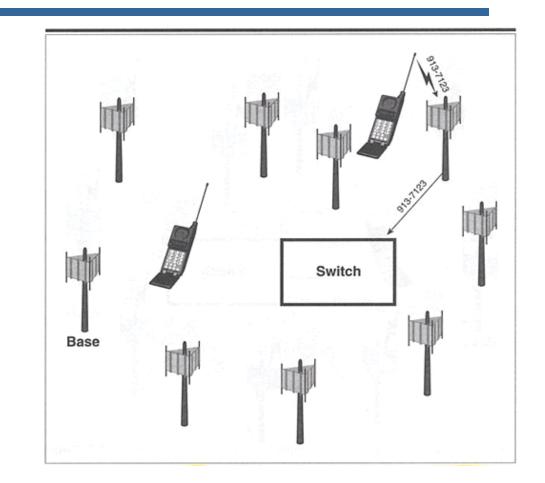
- Cell (hexagon with 2-10 km radius)
- Cellular System Infrastructure
 - MS (mobile system)
 - BS (base station)
 - BSC (base station controller)
 - MSC (mobile switching center)
 - PSTN (public switched telephone network)

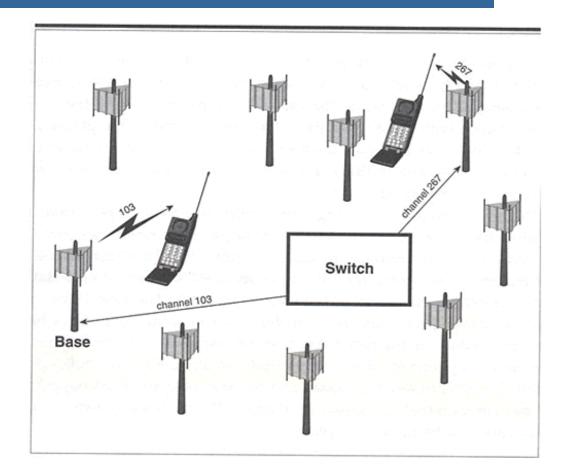
Different generations

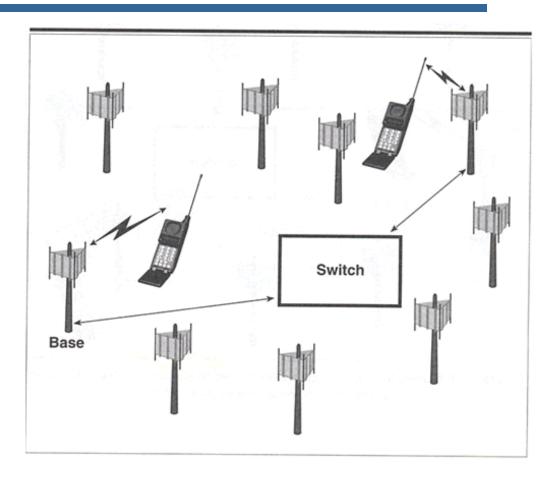
- IG (analog): 1980s
- 2G (digital): 1990s
- 2.5G (digital): Late 1990s
- G (cdma2000 in US and W-CDMA in Europe and Japan): 2000s
 - 128 Kbps (high speed)
 - 384 Kbps (slow speed)
 - 2 Mbps (stationary)
- 4G/5G (MC-CDMA, OFDM): 2010s

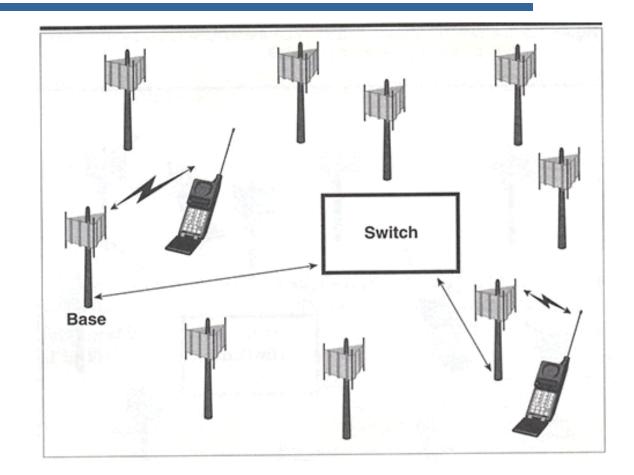

Issues to be covered

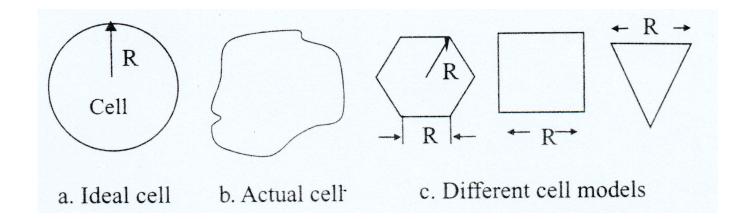

- Celluar Concept
- Mobility Management
 - Handoffs
 - Location Management
- Channel Assignment


Celluar Call: a sample


- Susan's telephone tunes to the strongest signal.
- Her request includes both her and Bill's telephone numbers. BS relays the request to the switch.
- The switch commands several BS's to transit paging messages containing Bill's number.
- Bill's phone responds to the paging message by informing the system of its location.


- The switch commands Susan's phone to tune to channel X and Bill's phone to channel Y.
- The cellular phone conversation starts.
- During the conversation, Bill moves to a new cell. The system rearranges itself to maintain the conversation.




Information flow for conventional call

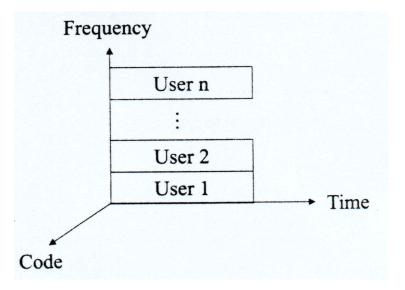
Information flow for cellular telephone call

system information	1		system information
	Anton a const		
service request	service reque	st	kura en secon - anes de infuention - anes
ring indication	ring indicatio	<u>n</u>	
paging broadcast	page request	page request	paging broadcast
lasciālstajas t previdentaj		notify response	e age response
tune to 103	assign ch. 103	assign ch. 267	tune to 267
			apply alert tone
stop ring indication	stop ring	notify response	notify response
	indication	<u> </u>	

Cell: hexagon

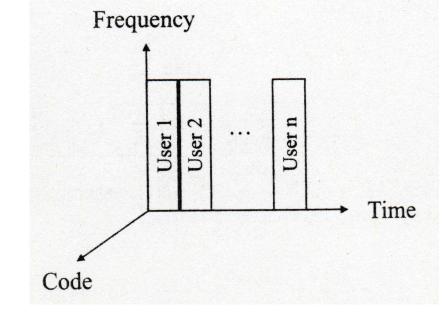
Shape of	Area	Boundary	Boundary	Channels/Unit	Channels/Unit	Channels/Unit
the Cell			Length/	Area with	Area when	Area when
			Unit	NChannels/	Number of	Size of Cell
			Area	Cells	Channels	Is Reduced
					Increases by	by a factor
	A Jan				a factor K	M
Square	R^2	4R	$\frac{4}{R}$	$\frac{N}{R^2}$	$\frac{KN}{R^2}$	$\frac{K^2 N}{R^2}$
cell (side						
= R)						
Hexagonal	$\frac{3\sqrt{3}}{2}R^2$	6R	$\frac{4}{\sqrt{3}R}$	$\frac{N}{1.5\sqrt{3}R^2}$	$\frac{KN}{1.5\sqrt{3}R^2}$	$\frac{K^2 N}{1.5\sqrt{3}R^2}$
cell (side=	_		Von	1.5 \ 511	1.0 \ 511	1.5 \ 51
R)						
Circular	πR^2	$2\pi R$	$\frac{2}{R}$	$\frac{N}{\pi R^2}$	$\frac{KN}{\pi R^2}$	$\frac{K^2 N}{\pi R^2}$
cell (ra-						
dius =						
<i>R</i>)						
Triangular	$\frac{\sqrt{3}}{4}R^2$	3R	$\frac{4\sqrt{3}}{R}$	$\frac{4\sqrt{3}N}{3R^2}$	$\frac{4\sqrt{3}KN}{3R^2}$	$\frac{4\sqrt{3}K^2M^2N}{3R^2}$
cell (side					011	on
= R)						

Channels assigned to a cell

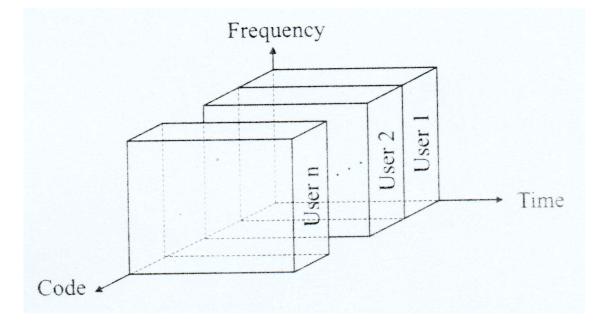

- Forward (or downlink): channels used to carry traffic from the BS to MSs
- Backward (or uplink): channels used to carry traffic from MSs to the BS

Voice channel vs. control channel

Multiple Radio Access


- Contention-based: Aloha, CSMA
- Conflict-free: FDMA, TDMA, CDMA,

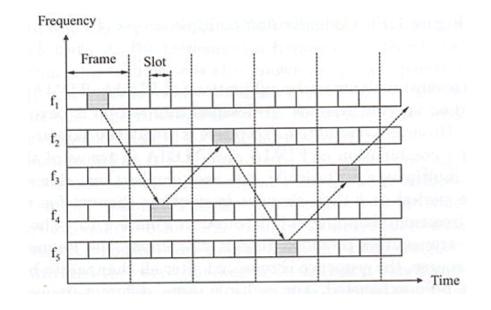
Multiplexing techniques FDMA (frequency division multiple access)



Multiplexing techniques

- TDMA (time division multiple access)
- GSM is based on TDMA)

Multiplexing techniques CDMA (code division multiple access)


Spread-spectrum technology

Make it less susceptible to the noise and interference by spreading over the bandwidth range of modulated signal

Two methods used in CDMA

- Direct sequence: signal is multiplied by a random sequence.
- Frequency hopping: a random sequence (also called hopping pattern) is used to change the signal frequency.

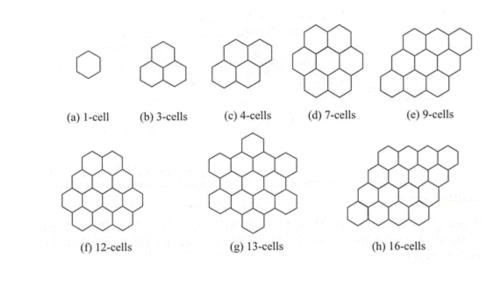
Frequency hopping

- Cluster: a set of cells that you utilizes the entire available radio spectrum
- Channel Interference
 - Cochannel interference
 - Adjacent channel interference
 - Cosite channel interference
 - (separated by k distance in frequency)

Importance of Cellular Topology

- U: # of users
- W: available spectrum
- B: bandwidth per user
- N: frequency reuse factor (size of cluster)
- M: # of cells required to cover an area

U = (M * W) / (N * B)


Cochannel reuse ratio

$$\frac{D}{R} = \sqrt{3N}$$

- D: distance between cochannel cells
- R: cell radius
- N: cluster size

(N can only take on values of $I^2 + IJ + J^2$ for integers *I* and *J*)

Cochannel reuse for N=1, 3, 4, 7, 9, 12, 13, 16

Cochannel reuse for N=7

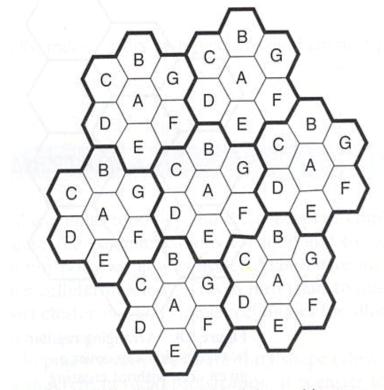
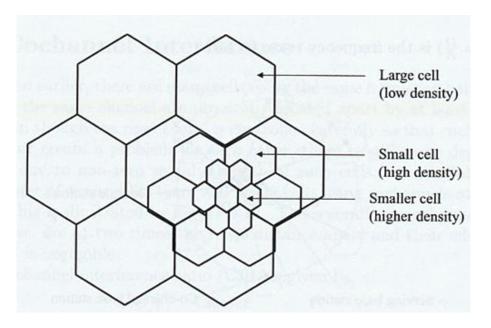


Figure 5.9 Hexagonal cellular architecture with a cluster size of N = 7.

Carrier-to-Interference Ratio (CIR)

CIR = Pdesired / Pinterference

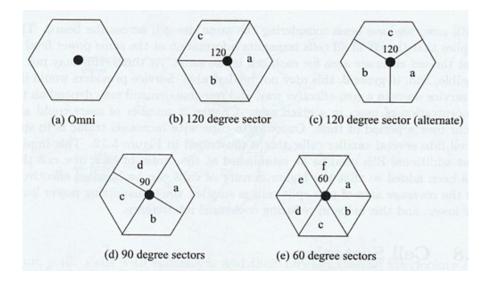

a: path-loss gradient (between 2 and 4) signal strength: Pd_{r}^{-a} where d1 is distance to signal and d2 is distance to interference

$$CIR = \frac{Pd_1^{-a}}{Pd_2^{-a}} = (\frac{d_2}{d_1})^a$$

Capacity Expansion

- Additional spectrum for new subscribers (\$20 billion for PCS bands)
- Change the cellular architecture: cell splitting and cell sectoring
- Nonuniform distribution of the frequency bands
- Change the modem and access technology

Cell Splitting

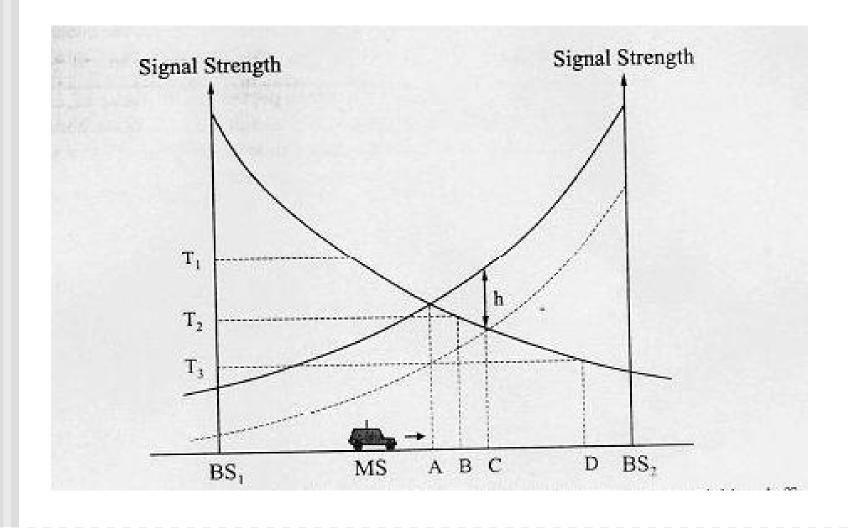

Cellular Hierarchy

- To extend the coverage area
- To serve areas with higher density
- Picocells: local indoor
- Microcells: rooftops of buildings
- Macrocells: metropolitan areas
- Megacells: nationwide areas
- Femtocells: a special picocell but administered by end users

- Cell sectoring: Omnidirectional antennas vs directional antennas
- 120 degree directional antennas (3-sector cells)

Different arrangements of directional antennas

Mobility Management


- Handoff management
- Location management

- Handoff: provide continuous service by handover from one cell to another.
 - Hard handoff
 - break before make
 - TDMA and FDMA
 - Soft handoff
 - make before break
 - CDMA

Signal strength contours (path loss)

Handoff Initiation

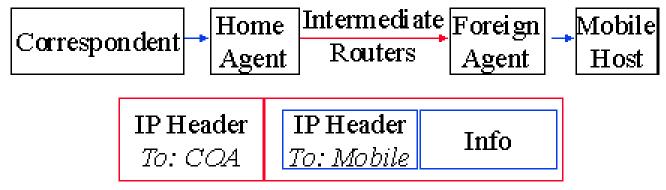
- Relative signal strength (point A in the following figure)
- Relative signal strength with threshold (point B)
- Relative signal strength with hysteresis (point C)
- Relative signal strength with hysteresis and threshold (point D)

Handoff Decision

- Network-controlled handoff
 - Network makes a handoff decision and BSs collect measurements of MSs
- Mobile-assisted handoff
 - MSs makes measurements and the network makes the decision
- Mobile-controlled handoff
 - MS is completely in control of the handoff process

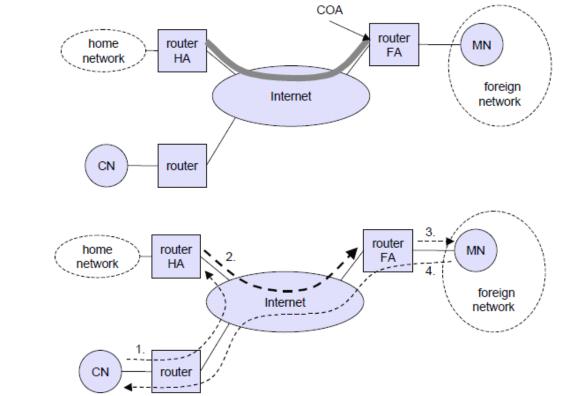
Wireless Internet

Mobile vs. Wireless


- Mobile vs. stationary
- Wireless vs. wired
- Wireless: media sharing
- Mobile: routing, location, addressing

Wireless Internet

- Network Architecture
 - OSI reference model (7 layers)
 - Application, Presentation, Sessions, Transport, Network, Data Link, Physical
 - TCP/IP reference model (4 layers)
 - Application (Telnet, ftp, and http)
 - Transport (TCP and UDP)
 - Internet (IP)
 - Host-to-network (LAN: IEEE 802.11)
 - Others: ATM reference model


Mobile IP

- Compatibility, scalability, transparency.
- Concepts: Correspondent Node (CN), Foreign Agent (FA), Mobile Node (MN)
- Home Address (HA): Mobile's permanent IP address
- Care-of Address (COA): Address of the end-oftunnel towards the MN.

Mobile IP

Encapsulation and tunneling (to COA)
 Transfer to MN (1, 2, and 3) and from MN (4)

Transfer to MN

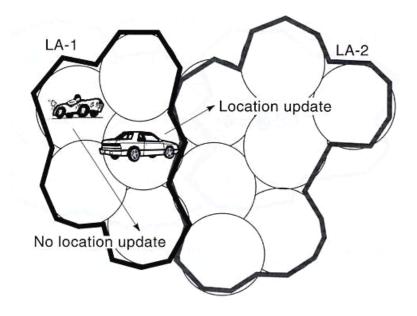
- Mobile IP (home agent, foreign agent, and care-of address): transfer to MN
 - 1. CN X transmits a message for mobile node A and the message is routed to A's home network
 - The home agent encapsulates the entire message inside a new message which has the A's care-of address in the header and retransmits the message (called tunneling)
 - 3. The foreign agent strips off the outer IP header and delivers the original message to A

Wireless TCP

- Traditional TCP
 - Any loss is due to congestion
 - Current congestion window size is halved.
- Solutions
 - Snoop TCP (BS snoops traffic and keeps a backup)
 - Indirect TCP (BS acts as proxy between CN and MN)
 - Explicit loss notification (retransmit without congestion control mechanism)

Location management:

- Activities a wireless network should perform in order to keep track of where the MS is
- Location updates
- Paging
- Location information dissemination

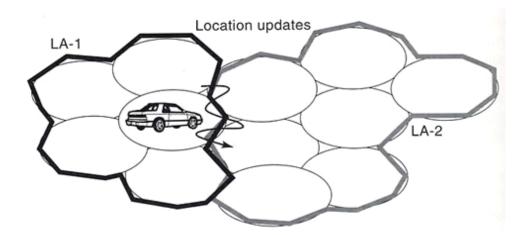

Location update

Messages sent by the MS regarding its changing points of access to the fixed network

- Static location update: the topology of the cellular network decides when the location update needs to be initiated
- Dynamic location update: the mobility of the user, as well as the call patterns, is used in initiating location updates

- Location Management Schemes
 - Location areas (LA)
 - Each LA consists of several contiguous cells
 - The BS of each cell broadcasts the ID of the LA to which the cell belong
 - Reporting center (RC)
 - A subset of cells is designated as RCs
 - The vicinity of a RC is the collection of all non-RCs that are reachable from the RC without crossing another RC
 - How to select of a set of RCs to minimize the total location management cost.

Location area (LA): a set of cells controlled by a MSC



- Two types of database for tracking
 - Home location register (HLR)
 - Visitor location register (VLR)
- Location Registration
 - Register the MS as the new serving VLR
 - Update the HLR to record the ID of the new serving VLR
 - Deregister the MS at the old serving VLR

Location update

- Each BS in the LA broadcasts its id number periodically
- An MS is required to continually listen to the control channel for the LA id
- When the id changes, the MS will make an update to the location by transmitting a message with the new id to the database containing the location information

Avoiding the ping-pong effect:

Update Strategies

- Time-based
 - When a MS enters a new cell, it needs to find out the number of cells that will be paged if an incoming call arrive and the resulting cost for the network to page the mobile station.
 - The weighted paging cost is the paging cost multiplied by the call arrival probability.
 - A location update will be performed when the weighted paging cost exceeds the location update cost

Movement-based

- Each MS keeps a count (init. 0) after each location update.
- The count is increased by one when NS crosses the boundary between two cells.
- When the count reaches a predefined threshold, the MS updates its location and resets the count to 0.

Distance-based

- Each MS keeps track of distance between the current cell and the last reported cell.
- The MS updates its location if the distance reaches a predefined threshold.
- Other tracking strategies
 - Profile-based
 - Topology-based
 - Load-sensitive-based

Location update vs. paging

 Trade-off between the cost of the nature, number, and frequency of location updates, and the cost of paging

Location information dissemination

- The procedures that are required to store and distribute the location information relate to the MS's
- The use of HLR and VLR

Some optimization techniques

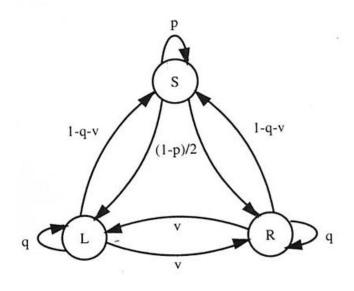
- Multiple Ids
 - store the id's of two most recently visited LAs
- Maintaining cache of LA info
- Pointer forwarding
 - Reporting can be eliminated by simply setting up a forwarding pointer from the old VLR to the new VLR
- Local anchoring
 - A VLR close to the MS is selected as its local anchor
 - The HLR keeps a pointer to the local anchor

- Call Delivery
 - Determining the serving VLR
 - Locating the visiting cell of the called MS (through paging)
- Paging: broadcasting a message in LA
 - Blanket paging with an LA (used in GSM)
 - Closest-cells first with ring search
 - Sequential paging

Some Common Assumptions

Network topology

- 1-D networks: linear array and ring
- 2-D networks: hexagon and mesh


Call arrival probability

- Known call arrival time (can update location just before the call arrival)
- Poisson process

Mobility models

- Fluid flow model: continuous movement with infrequent speed and direction changes
- Random walk model: time is slotted. The probability that the subscriber remains in the current cell is *p* and to a neighbor is (1-p)/n, where n is the number of neighbors (memoryless)
- Markov walk model: the current move is dependent on the previous move.

A sample Markov walk model

Normal walk model: The I th move, M(I), is obtained by rotating the (I-1) th move, M(I-1), counterclockwise for Θ(I) degrees, where Θ(I) is normally distributed with zero mean

- Channel assignment: assigns the required number of channels to each cellular region such that
 - Efficient frequency spectrum is utilized.
 - Interference effects are minimized.

Three constraints in channel assignment

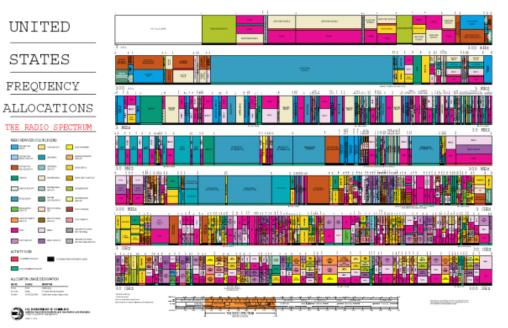
- Frequency constraints: the number of available frequencies (channels) in the radio spectrum.
- Traffic constraints: the minimum number of frequencies required by each station.
- Interference constraints: the constraints on the placement of frequencies at different stations.
 (e.g. CIR in each co-channel is above the required minimum.)

- Three types of interference constraints
- Cochannel constraints
- Adjacent channel constraints
- Cosite constraints: any pair of channels assigned to a radio cell must occupy a certain distance in the frequency domain.

- Fixed channel assignment (FCA): channels are nominally assigned to cells in advance according to the predetermined estimates traffic intensity.
- Dynamic channel assignment (DCA): channels are assigned dynamically as calls arrive.
- FCA works better in heavy traffic conditions

Other extensions and combinations:

- Hybrid channel assignment (HCA): channels are divided into two groups: one uses FCA and the other uses DCA.
- Borrowing channel assignment (BCA): channel assignment is still fixed, but each cell can borrow channels from its neighboring cells.


Other approaches

- With handoff: intracell and intercell
 - Direct some of the calls currently in process to attemp handoff to an adjacent cell
- Power control: to achieve the desired CIR level
 - Reuse partition: each cell in the system is divided into two or more cocentric subcells (zones). The power required to achieve the desired CIR level is lower in inner zones.

Cognitive Radios

Cognitive radios

- Sensing (spectrums)
- Cognition (primary users)
- Adaptability (best use unused spectrum)
- Adaptive Channel Allocation
 - Spectrum sharing (primary and secondary)
 - Graph and game theory

Models:

- Cellular network: graph G=(V, E) where V is the set of cells and E represents the set of adjacent cells.
- Weighted graph:
 - Weighted associated with links: separation of frequencies
 - Weighted associated with nodes: amount of frequencies

Graph Labeling:

- Constraint is a nonincreasing sequence of positive inter parameters c0, c1, ..., ck.
- Channels assigned to cells at graph distance i from each other must have a separation of at least ci.

Recoloring (in a dynamic network):

- Multicoloring as a sequence of weighted graphs {(G, w(t)): t >0}, where w(t)(u) is the number of calls to be served at node u at time t.
- A challenge is to develop algorithms that do allow recoloring but only a limited amount.

- Channel Assignment as a mapping problem:
- Optimization problem (NP-complete)
 - Sample combinatorial formulations
 - Heuristic techniques
- Graph coloring problem (with cochannel constraints only)
 - Graph models
 - Lower bounds

Combinatorial formulations:

- Minimum order FAP: minimize the number of different frequencies used.
- Minimum span FAP: minimize the span (difference between max and min frequency used).
- Minimum (total) interference FAP: minimize the total sum of weighted interference.
- Minimum blocking FAP: minimize the overall blocking probability of the cellular networks.

Heuristic techniques:

- Neural networks
- Evolutionary algorithms: Genetic algorithm
- Fuzzy logic
- Simulated annealing
- Tabu search
- Swarm intelligence (collective behavior of animals)

A new heuristic is acceptable if:

- It can produce high-quality solutions more quickly than other methods,
- it identifies higher-quality solutions better than other approaches,
- it is easy to implement, or
- it has applications to a broad range of problems.

Graph model: multicoloring

- Weighted graph (G=(V, E), w) and color set C
- Function f assigns each v in V a subset of f(v) of C such that
 - For all |f(v)|=w(v): each node gets w(v) colors.
 - For all (u, v) in E, f(u) and f(v) have no common element: two neighboring nodes get disjoint sets of colors.

Graph model: multicoloring with reuse distance of r.

- Define G'=(V', E') based on G=(V, E) such that
 - V = V' and $E = E \cup E^1 \cup ... \cup E^{r-1}$
 - Any pair of nodes at distance d < r in G is connected by an edge in G'.

Graph model: with overlapping cell regions

- Define G=(V, E), where G is a bipartite graph with MS and BS being two sets.
 - Matching condition: each MS is adjacent to a BS and each BS is adjacent to at most k MS.
 - Channel Assignment Theorem: Matching condition can be met iff for each subset, S, of MS set, |S| < k |BS(S)| + 1, where BS(S) is the set of BS adjacent to MS in S.

Lower bounds:

- Clique: a complete subgraph.
- Weighted clique number: ω(G, w)
 - Maximum weight of any maximal clique in the graph.
- Weighted clique number is a lower bound for the multicoloring problem.

Lower bounds:

- Minimum odd cycle: n
- Another lower bound: 2W/(n-1), where W is the sum of weights of all nodes in the cycle
 - The maximum size of an independent set in an *n*-node odd cycle is (*n-1)/2*.